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Abstract. We present a list of problems in arithmetic topology posed at the
June 2019 PIMS/NSF workshop on "Arithmetic Topology". Three problem
sessions were hosted during the workshop in which participants proposed open
questions to the audience and engaged in shared discussions from their own
perspectives as working mathematicians across various fields of study. Partic-
ipants were explicitly asked to provide problems of various levels of difficulty,
with the goal of capturing a cross-section of exciting challenges in the field that
could help guide future activity. The problems, together with references and
brief discussions when appropriate, are collected below into three categories:
1) topological analogues of arithmetic phenomena, 2) point counts, stability
phenomena and the Grothendieck ring, and 3) tools, methods and examples.

Three problem sessions were hosted during the workshop in which participants
proposed open questions to the audience and engaged in shared discussions from
their own perspectives as working mathematicians across various fields of study.
Participants were explicitly asked to provide problems of various levels of difficulty,
with the goal of capturing a cross-section of exciting challenges in the field that
could help guide future activity. The problems, together with references and brief
discussions when appropriate, are collected below into three categories: 1) topolog-
ical analogues of arithmetic phenomena, 2) point counts, stability phenomena and
the Grothendieck ring, and 3) tools, methods and examples.
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1. Topological Analogues

1.1. Craig Westerland. This problem concerns the homology of random topolog-
ical objects and the Cohen–Lenstra distribution, originally introduced to heuristi-
cally understand experimental observations about the class groups of number fields
[18]. The Cohen–Lenstra distribution on finite (abelian) groups posits that the
probability of each group G being in the support of the distribution is inversely

JW is supported in part by NSF Grant Nos. DMS-1811846 and DMS-1944862. Support for
the workshop was provided by PIMS and by NSF Grant No. DMS-1856737.

1



PROBLEMS IN ARITHMETIC TOPOLOGY 2

proportional to |G|n|Aut(G)|m for some n,m ≥ 0. Since its first use, it has ap-
peared throughout number theory and in various models of random integral matrix
cokernels; see, for example, [15, 27, 58, 86].

Working one prime p at a time, one can compute the p-power torsion and torsion-
free part of the integral homology of a given chain complex by tensoring with
the p-adic integers Zp before taking homology. If one further specifies the total
homological rank r of such complexes, the Cohen–Lenstra distribution specifies a
discrete measure on the resulting module M = Zrp×N (for N an abelian p-group).
We can then ask the following question:

Conjecture 1. LetX• be a random simplicial complex. Does the torsionH∗(X•)tors
have a Cohen–Lenstra distribution?

This question was originally posed by Matt Kahle, Frank Lutz, Andrew Newman
and Kyle Parsons, along with experimental evidence supporting the conjecture, in
[50]. Westerland raised this standing problem and also discussed an analogue for
random manifolds where one can introduce a torsion linking pairing

Hi(X;Z)tors ×HdimX−i−1(X;Z)tors
∪−→ HdimX−1(X;Z)tors

δ−→ HdimX(X;Q/Z) ∼= Q/Z.

Delaunay [21] introduced heuristics in the context of a bilinear pairing

µ : G×G→ Q/Z,

originally in the symplectic context of Tate–Shafarevitch groups but later expanded
by others (e.g. [8, 85]) to additional phenomena, where Aut(G) is replaced with
Autµ(G) of automorphisms preserving the pairing.

Question 2. Are there Delauney heuristics in the random manifold case?

Andy Putman mentioned useful models for random 3-manifolds (e.g., Dunfield–
Thurston manifolds via random classes in the mapping class group Modg) that
might help approach this problem.

1.2. Daniel Litt. Motivated by the Frobenius action on the pro-p Galois group of
a curve over Fp, consider a random automorphism ϕ of a free pro-p group F , and
construct a random Weil group

Wϕ := F o 〈ϕ〉.

What is the representation theory of Wϕ? Do the predictions from geometric
Langlands theory hold? For example:

Problem 3. Given an irreducible continuous representation ρ : Wϕ → GLn (Fp((t))),
does the restriction ρ|F always have finite image?

For F the geometric étale fundamental group of a smooth projective curve X
over Fq, the analogous problem was posed by de Jong [20] and proven by Gaitsgory
[33]. Similarly, one could ask:

Problem 4. Let L/Qp be a finite extension, and let ρ : Wϕ → GLn(L) be a contin-
uous irreducible representation. For almost every ϕ (i.e. with probability 1), does
H1
cts(F ; ρ⊗ ρ∨)ϕ = 0?
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Viewing H1
cts(F ; ρ⊗ρ∨)ϕ as the tangent space to ρ in the character variety of F ,

we can understand the previous problem as a “cohomological rigidity” statement.
Like the first problem, this problem is a theorem for F the geometric étale fun-
damental group of a smooth projective curve X over Fq: indeed, a theorem of L.
Lafforgue [59] implies that ρ is pure of some weight, so ρ⊗ ρ∨ is pure of weight 0.
Deligne’s bounds [22] therefore imply that H1

cts(F ; ρ⊗ ρ∨) is pure of weight 1, and
hence the invariants of Frobenius are trivial.

More generally, both of the above problems arise from trying to understand in
what sense the action of Frobenius on the geometric étale fundamental group of a
smooth projective curve over Fq is “special”? Affirmative answers to both of the
questions above would suggest that it isn’t!

2. Point counting, Stability Phenomena and the Grothendieck Ring

2.1. Akshay Venkatesh. In many interesting number theory problems (e.g. count-
ing number fields) one has not only a main term in the asymptotic count, but a
secondary term or more. For example, the number of cubic fields of discriminant
up to X is

aX + bX5/6 + lower order terms

We have very little understanding of these lower order terms, and they are not just
of theoretical interest: when one tries to verify the conjectures numerically, one
finds that the secondary terms are dominant in the computational range.

So the question, following the framework of the Weil conjectures, is:

Problem 5. What is the topological meaning of secondary terms appearing in
assymptotic counts in number theory?

They do not correspond to stable cohomology classes (these are the main terms),
but to some kind of slightly weaker structure, which is still much better behaved
than cohomology near middle degree.

2.2. Zachary Himes. The recent work of Galatius–Kupers–Randal-Williams [34,
35] develops and applies a homology theory based on Ek-algebras, originally intro-
duced to study k-fold loop spaces [64], with the goal of showing results “beyond
homological stability” which they call secondary stability. For example, in [35], Ek-
homology is used to measure the failure of homological stability itself as a stable
phenomenon in the context of mapping class groups, and in [73], this perspective
is used to explain the homological stability phenomena which underlie the break-
through work of Ellenberg–Venkatesh–Westerland [27].

Question 6. Building off [27], can one prove Hurwitz spaces have stability (for
more general groups than the dihedral groups)? Secondary stability, or higher-order-
stability? What can one say about the homology of Hurwitz spaces after restricting
to subsets of connected components?

2.3. Daniel Litt.

Problem 7. Fix n, d, and q. How many supersingular hypersurfaces X ⊂ Pn exist
of degree d over Fq? In particular, does such a hypersurface exist for every degree,
dimension, and characteristic? Moreover, the set of such varieties are the Fq-points
of some supersingular locus V—what is the class [V ] in the Grothendieck ring?
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A great deal is known about the supersingular locus in particular cases. See, for
example, the work of Oort and Li [63] on moduli spaces of supersingular abelian
varieties, especially on the case of principally polarized abelian varieties Sg,1.

2.4. Aaron Landesman. Cohen–Lenstra heuristics can be used to describe dis-
tributions of class groups of certain global fields. In many ways, the Selmer groups
of elliptic curves behave similarly to class groups. As such, Landesman provided
two conjectures—a number-theoretic version and a topological version—relating
topological techniques to the average size of Selmer groups of elliptic curves over
function fields. We describe the latter here, framed as a question of homological sta-
bility, which would likely imply the number-theoretic conjecture. For more details,
see [60].

Definition 8. The moduli space of Weierstrass models is given by

Wd := {(a(S, T ), b(S, T )) ∈ C[S, T ]2 | homogeneous degree 4d

and 6d, respectively} ⊆ C10d+2.

A point W = (a(S, T ), b(S, T )) ∈ Wd gives rise to an elliptic surface SW via

SW := {([S : T ], [X : Y : Z]) ∈ CP1×CP2 | Y 2Z = X3 +a(S, T )XZ2 + b(S, T )Z3},
together with the natural projection map ϕW : SW → CP1. The universal family
of Weierstrass models, UWd, is the space parameterizing models W and a point p
on the corresponding elliptic surface SW . That is,

UWd := {(W,p) ∈ Wd × (CP1 × CP2) | p ∈ SW }.
There are natural projection maps

UWd
f−→ CP1 ×Wd

g−→Wd.

The Selmer space is constructed as Seldn(C) := R1g∗(R
1f∗(µn)).

Question 9. For fixed n, do Seldn(C) satisfy homological stability as d→∞?

In particular, Landesman provided a more precise prediction:

Conjecture 10. There are constants A and B depending on n so that

dimHi(Seldn(C);Q) = dimHi(Seld+1
n (C);Q)

whenever d ≥ Ai+B.

2.5. Will Sawin. Continuing the paradigm put forward by Vakil–Wood [82], Sawin
proposed further comparison of three types of convergence for families of varieties:

(1) Homological stability, i.e. isomorphisms between low-degree singular coho-
mology groups (equivalently, high-degree compactly-supported cohomology
groups), ideally in some way respecting arithmetic structures such as Galois
representations, Hodge structures, etc.

(2) Point counts, in particular after normalizing by a factor of q− dim.
(3) Convergence in the Grothendieck ring under the dimension filtration; see,

for example, [82].
In particular, Sawin suggested fixing a degree d and considering a sequence Hn

of smooth degree d hypersurfaces in Pn as follows:

Question 11. Does lim
n→∞

[Hn]− [Pn−1]

[An−1]
exist? Is the limit zero?
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This convergence makes sense for many objects that came be obtained via maps
out of the Grothendieck group (i.e., Hodge structures), so a negative result would
show the Grothendieck ring is richer than these. In the setting of homological
stability, this question reduces to the Lefschetz hyperplane theorem; with respect
to counting points over Fq, the limit can be controlled when √q is larger than d−1
using Lefschetz together with the Weil conjectures. While any progress towards
answering this question is interesting in its own right, there is also an application
to proving Grothendieck ring analogues of the Browning–Sawin circle method [13].

2.6. Ronno Das. In 1849, Cayley and Salmon [14] showed that every smooth cubic
surface over an algebraically closed field contains exactly 27 lines. If we instead let
X be a smooth cubic surface over k = R or Fq, for example, the number of lines
contained in X and defined over k can be strictly less than 27. In fact, as shown
by Das [19], the average number of lines on a cubic surface over Fq is exactly 1 for
all but finitely many characteristics.

More generally, as suggested in correspondence with Ravi Vakil, one can consider
lines on del Pezzo surfaces of degree 1 ≤ d ≤ 9, where d = 3 is the case of cubic
surfaces. For more details see, for example, [7] and [75].

Problem 12. What is the average number of Fq-lines of a degree 1 del Pezzo
surface over Fq?

The average number of lines on a del Pezzo surface defined over Fq is 1 for degree
d ≥ 3, except when d = 7 where the average is 2. Moreover, the d = 2 case is closely
related to Bergvall’s computations [6].

Problem 13. Is there a uniform proof for all degrees 1 ≤ d ≤ 9?

2.7. Jesse Kass. When q is odd or when k = R, Segre [77] observed that a line
` on a cubic surface X comes equipped with a distinguished involution L that is
necessarily hyperbolic or elliptic as an element of PGL2, determined by whether or
not the fixed points of L are defined over k.

Definition 14. A line ` on a cubic surface X, both defined either over R or Fq for
q odd, is said to be hyperbolic (respectively, elliptic) if the distinguished involution
L (see [77]) is hyperbolic (respectively, elliptic).

See the papers of Finashin–Kharlamov [30], Okonek–Teleman [69], and Kass–
Wickelgren [54] on how this distinction gives rise to restrictions for the number of
lines on cubic surfaces defined over R and Fq with odd characteristic.

Problem 15. Let X be a cubic surface over Fq, a finite field of odd characteristic,
and with 27 lines defined over Fq. Let H and E be the number of hyperbolic and
elliptic lines, respectively.

(1) What pairs (H,E) can appear?
(2) Statistically, how often do each appear?
(3) What subgraphs of the intersection graph of lines can be given by hyperbolic

and elliptic lines?

2.8. Isabel Vogt.

Problem 16. Let X be a smooth cubic hypersurface defined over Fq and fix n ≤
q+ 1 points from X. Does there exist an algebraic map f : P1

Fq
→ X such that the

n points are contained in the image? If so, what degree is necessary?
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As proved by Kollár [57], the answer to the first question is yes when q ≥ 8,
but the degree of f grows rapidly. In general, for X a fixed hypersurface with
g : Z → X a map on some finite subscheme Z of P1, one can consider the space

Mord(P1, X; g) :=
{
f ∈ Mord(P1, X) : f |Z = g

}
of maps extending g to all of P1. The preceding question becomes that of the Fq-
points of Mord(P1, X; g). In this spirit, Vogt offered the following general problem:

Problem 17. Asking these questions over C, how does the topology of the associ-
ated spaces vary as d grows?

As a related example, fixing a degree d holomorphic function g : CPm−1 → CPn,
Mostovoy [65, 67] considered the space

Mord(CPm,CPn; g) := {f : CPm → CPn|f ◦ i = g}

for some fixed embedding i : CPm−1 ↪→ CPm, and exhibited a map

Mord(CPm,CPn; g)→ Ω2mCPn

that induces isomorphisms in homology up to degree d(2n − 2m + 1) − 1. Since
the latter space has a homotopy type naturally invariant of d, this result (and
subsequent generalizations into toric varieties [66]) gives a homological stability
result in the spirit of problem 17.

2.9. Vlad Matei.

Problem 18. Consider the variety of monic square-free polynomials,

Polyn(k) := {(an−1, . . . , a0) ∈ kn | tn + an−1t
n−1 + · · ·+ a0 is square-free}.

Fixing n and k = Fq, what is the distribution of the ai ∈ Fq for i ≤ n− 2?

In the q � 1 regime, the coefficients are well-known to be uniformly distributed.
On the other hand, fixing q, one can see immediately that an−1 is uniformly dis-
tributed simply by elementary substitutions. The question of fixing some of the
coefficients is of particular interest to computer scientists; see, for example, [39] for
a history of the problem. Matei outlined two distinct ways to study the aforemen-
tioned problem:

The first is by dualizing—considering the discriminant hypersurface ∆ ⊂ An and
picking out Fq-points by their coordinates. These, in turn, can be thought of as
hyperplane sections of ∆. The downside of this approach is that we would need an
explicit formula for ∆ in terms of the coefficients, which becomes computationally
infeasible even in small degrees.

The second approach is by considering hypersurfaces determined by the symmet-
ric sums of the roots {z1, . . . , zn}. Writing σk for the kth symmetric sum, one could
consider hypersurfaces of the form σk = a ∈ Fq on the open locus of distinct roots.
In this case, the objective is to understand the Sn-action on these hypersurfaces
and the associated cohomology groups, in order to count Fq points on the quotient.

2.10. Oishee Banerjee. While many of the results concerning the cohomology
of moduli spaces of polynomials concentrate on data encoded in their zeroes, i.e.
configuration spaces on C, one can also proceed by studying ramification. Such
work is in the spirit of long-standing open problems concerning the topology of
Hurwitz spaces.
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Indeed, the irreducibility of the Hurwitz space is a classical result proved in [16],
where the topology of its subvarieties corresponding to specific ramification loci is
almost completely unknown. Banerjee [4] studied the stable cohomology of these
Hurwitz spaces satisfying certain conditions. In addition her work shows that the
étale cohomology does not stabilize in positive characteristic, which is in contrast
to comparable stability results (see [29, 27].)

Problem 19. Fix a prime power q and integer n with char(Fq) > n+ 1. For which
f(t) ∈ Polyn(Fq) does the anti-derivative

F (t) :=

∫ t

0

f(x)dx

give a simply-branched mapping F : A1 → A1? Alternatively, how many simply-
branched maps F : A1 → A1 over Fq of degree n+ 1 have dF

dt ∈ Polyn(Fq)?

2.11. Patricia Hersh. This question is motivated by the task of moving from
studying the configuration space of n distinct points on a manifold, either entirely
labeled or unlabeled, to instead looking at situations where the n points are parti-
tioned into groups of points that cannot be distinguished from each other but can
be distinguished from the other groups of points.

If A is a hyperplane arrangement one can count the number of Fq points in the
complement X of A using the Möbius function µA of the intersection poset LA (see,
for example, [80]). In short:

(2.1) #X(Fq) =
∑
y∈LA

µ(0̂, y)qdimA−rk y.

Hersh–Kleinberg introduced a multiplicative deformation of the Möbius function,
µ′, defined somewhat similarly to µA but (1) replacing the recursion for µA by
a recursion that forces µ′ to be multiplicative, and (2) replacing the intersection
poset LA in the counting formula above by the multiset partition poset ordered by
refinement. In particular, µ′ records multiplicities of incidences and thus behaves
more elegantly in various contexts (see [47] for details).

Question 20. Replacing µ with µ′ in (2.1) and replacing LA by the multiset par-
tition poset, does the resulting formula have arithmetic meaning?

Additional references are [36] and [46], the former remarked by Melanie Wood.

2.12. Joseph Gunther.

Question 21. Let C(a, b) be moduli space of smooth complex curves in P1 × P1 of
bi-degree (a, b). Is there a homological stability for C(a, b) as b→∞ with a fixed?

This problem is solved over Fq by [28] and a motivic treatment is found in [9].

2.13. Vlad Matei. In 1984, Kani–Rosen [52] studied relations between idempo-
tents in the algebra of rational endomorphisms of a fixed abelian variety. In par-
ticular, if a group G covered by subgroups H1, . . . ,Hr acts on a smooth variety X
over Q, we obtain idempotents εHi

given by

εHi
:=

1

Hi

∑
h∈Hi

h
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in the group algebra Q[G] that come with linear relations of the form
n∑
i=1

aiεHi
= 0.

Question 22. Do these transfer to relations in the Grothendieck ring? That is,
are there ai ∈ Z such that

r∑
i=1

ai[X/Hi] = 0?

Matei observed that this holds for the action of G = S3 on affine space A3, but
Daniel Litt commented that he expects this to be false mod p generically.

3. Developing tools, methods, and new examples

3.1. Will Sawin. Sawin’s talk outlined joint work with Tim Browning on a geo-
metric version of the Hardy–Littlewood circle method, used to compute the com-
pactly supported cohomology of the space of rational curves on a smooth hyper-
surface (see [13]).

Question 23. Can we apply these methods to other cases, such as to maps
(1) from higher genus curves?
(2) into projective varieties?
(3) into complete intersections?
(4) with local conditions?
(5) with Hodge structure modules?

3.2. Michael Fried. For n ≥ 4, two moduli spaces associated to P1
z appear often:

The moduli of ordered (distinct) pointsM0,n := ((P1
z)
n \∆n)/PGL2(C), and

The moduli of unordered (distinct) points Jn := (Pn \Dn)/PGL2(C)

where ∆n is the “fat diagonal”, i.e. the locus of points with repetitions, and Dn is
the discriminant (treating the homogeneous coordinates in Pn as the coefficients of
a degree n polynomial in one variable). For n = 4, these are the (open) classical
lines P1

λ \ {0, 1,∞} and P1
j \ {∞}. The fundamental group of M0,n mod outer

automorphisms, πn, is the pure (spherical) braid group on n strands mod its center
Z/2Z. Note that π4 is a free group on two generators, F2.

The Grothendieck–Teichmüller group is a conjectured description (cf. [41, 49,
24]) of the absolute Galois groupGQ given by its action on the profinite fundamental
group(oid)s of M0,4 and M0,5. Even if correct, Grothendieck’s conjecture is not
useful without a way to name elements in the action of GQ (cf. [49, Question 2, p.
6]).

Ihara replaced πn by πniln , its nilpotent completion, as a way to name the elements
in their action; note that this won’t capture all of GQ. He, along with Anderson,
documented aspects of this for explicit collections of covers (e.g. [1, 2]). Foremost
was his identification of the second commutator quotient of GQ (the 2-step nilpotent
quotient), using the 3, 4, and 5-cycle relations developed by Drinfeld (and appar-
ently known to Grothendieck). This generalized the Kronecker-Weber description
fo the abelian quotient of GQ as the (Galois group over Q of the) cyclotomic closure
of Q (see [48]).

Problem 24. Go beyond the nilpotent quotient πniln to give a naming scheme for
elements in GQ.
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We propose that a moduli-theoretic approach is possible using reduced Hurwitz
space covers (see [31] and [3, 32]). These covers of Jn – defined by finite groups and
conjugacy classes withing these group, and parametrizing branched covers of P1

with fixed branching data and monodromy group – pull back to unramified covers
ofM0,n whose components and their fields of definition are controlled by an explicit
braid group action. For example, for n = 4, components, genuses and cusps of these
covers ofM0,4 = P1

λ \ {0, 1,∞} are efficiently computable. We propose that these
Hurwitz moduli spaces give a way to identify the GQ action. Using versions of
Deligne’s tangential base points [23] based in Jn rather thanM0,n (significant even
for n = 4) thereby gives tests relating Drinfeld’s relations to the fields of definition
of components of Hurwitz sapce.

Special case: even the case when the Hurwitz space pullbacks to M0,n are
nilpotent covers should be doable and significant (e.g. in shedding new light on
Ihara’s results).

3.3. Jesse Kass. The following was discussed in the context of developing an
enriched discriminant or conductor using A1-homotopy theory, in the context of
the mini-course by Kirsten Wickelgren and work by Marc Levine; see, for example,
[61].

Consider a generically separable non-constant Galois cover f : Y → X of smooth
projective curves with Galois group G. Associated to df there is a certain Euler
class, the enriched different, which is related to the “enriched Riemann–Hurwitz for-
mula” due to Levine. In classical theory, the different is related to the discriminant
and the conductor; see, for example, [68] for an overview.

Question 25. Is there an enriched conductor associated to y ∈ Y and x = f(y)?

Definition 26. The classical conductor is defined via the Artin character (see [40]).
In this context, where Gy := StabG(y), we have an enriched Artin character

Gy → GW(k)

σ 7→ local Lefschetz trace of σ,

where GW(k) is the Grothendieck-Witt group associated to the field k.

Question 27. Is the enriched Artin character the character of some map?

More generally, the task here is to continue enriching Serre’s book [40].

3.4. Daniel Litt. Following the work of Marc Levine, Jesse Kass, Kirsten Wick-
elgren, and others (see, for example, [54, 55, 62]), Daniel Litt asked about creating
enriched Gromov-Witten invariants.

Question 28. Can we develop enriched Gromov-Witten invariants in the non-
enumerative case? Can we relax the conditions, e.g. for non-smooth varieties?

Kass remarked that there are computations over the real numbers, for example
[37, 78, 84], which might give us some hint on how to define them.

3.5. Hannah Knight. In 1979, based on intuition from Morse theory, Segal [76]
proved that the map

Ratnd (C) ↪→ Ω2CPn
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is a homotopy equivalence through dimension (2n− 1)d, where Ω2CPn is the space
of based continuous maps CP1 → CPn with the compact-open topology. Part of
his proof included exhibiting homological stability via (non-algebraic) maps

Ratnd (C) ↪→ Ratnd+1(C).

This work inspired many generalizations in the 40 years since, for example extending
the domain to genus g ≥ 1 curves and the target to Grassmannians or toric varieties;
see, for example, [12, 17, 43, 42, 51, 56]. Jun-Yong Park remarked that his joint
work with Changho-Han and Hunter Spink [45, 72] showed stability for maps from
P1 to weighted projective spaces P(a, b). Kirsten Wickelgren commented that the
Chow ring of stable maps from P1 → Pn is known to stabilize in the degree, due to
Pandharipande [70].

Knight asked what was known about extensions of Segal’s results to the case

Hold(CPm,CPn) = {(f0, . . . , fn) : each fi ∈ C[x0, . . . , xm]d with no common root} ,
where 1 < m ≤ n and d ≥ 1. Claudio Gómez-Gonzáles remarked that this work
had been carried out, first by Mostovoy [65, 67] and, more generally, by Mostovoy–
Munguia-Villanueva [66]. Further, [38] calculates the stable homology as d → ∞,
and shows that both the unstable rational homology and corresponding point counts
seem to be independent of d (except for dimension reasons, for the latter). Benson
Farb added that, in general, little is known about spaces of algebraic maps when the
(complex) dimension of the domain is greater than one (except when those spaces
are finite). This motivates:

Question 29. Can we develop more general methods to study the topology of spaces
of algebraic maps X → Y between varieties, especially when X has dimension
greater than 1?

Question 30. Can we replace homology/cohomology with the Chow ring in more
general settings?

3.6. Jesse Kass.

Question 31. What are the standing obstructions to computing cohomologies of
discriminants? Are there problems that can serve as benchmarks for extending the
existing techniques?

Orsola Tommasi commented that she uses Vassiliev’s method (see [83, 81]).
Many papers cited here use some variant of Vassiliev’s spectral sequence; Mostovoy
[67], for example, use a truncated version of the spectral sequence when the limiting
terms become too cumbersome to compute.

3.7. Jun-Yong Park. Trace formulas give a concrete way to work with arithmetic
topology. However, moduli functors that we want to study are often represented
in the category of stacks rather than schemes, which are harder to work with. Kai
Behrend [5] established a trace formula for algebraic stacks, which has extended this
arithmetic topology bridge to many moduli stacks. For example, Han and Park [45,
44, 71] computed the `-adic cohomology of the Hom stack Homn(P1,P(λ0, . . . , λN ))
and its class in the Grothendieck ring, with connections to fine moduli stacks of
elliptic and hyperelliptic fibrations over P1.

Question 32. Can we develop a robust and general theory of point counting to
understand moduli stacks arithmetically?
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Wei Ho remarked on important connections to the work of Ellenberg–Satriano–
Zureick-Brown [26], bringing together many arithmetic problems about counting
points, such as the Batyrev–Manin Conjecture, the Malle Conjecture, and more via,
among other things, establishing a theory of heights on stacks. See, for example,
the paper by Boggess and Sankar [10], which discusses stacky versions of these
conjectures in the context of the Ellenberg–Satriano–Zureick-Brown framework.

3.8. Inna Zakharevich. Consider the Grothendieck ring of varieties over a field
k, K0(Vark), equipped with its dimension filtration, where the nth graded piece of
the filtration is given by those elements that can be represented as sums of varieties
of dimension at most n, i.e., the image of the natural map

(3.1) K0(Var≤nk ) := Z[X|dimX ≤ n]/([X] = [Y ] + [X − Y ])→ K0(Vark).

The quotients K0(Var≤nk )/K0(Var≤n−1k ) have a simple presentation as the free
abelian group on the birational isomorphism classes of n-dimensional varieties.

However, as shown by Karzhemanov [53] in 2014 and Borisov [11] in 2015, the
map (3.1) is non-injective when k ⊆ C. The failure of injectivity is measured by a
spectral sequence whose differentials compute the differences

[X − U ]− [X − V ],

where U and V are isomorphic open subsets identified by a birational automorphism
of X; for details, see [87]. This motivates the following problem:

Problem 33. Fix a field k, variety X, and a birational automorphism f : X 99K X.
Let U, V ⊆ X be open subsets such that f : U → V is an isomorphism. Give an
explicit example such that the complements X−U and X−V , which will be equal
in the Grothendieck ring, are not piecewise isomorphic.

As remarked above, such an example must exist for k ⊆ C, though none is
known; it is unknown if examples exist over other fields.

3.9. Zinovy Reichstein.

Problem 34. Let G be a finite group and fix subgroups H1, . . . ,Hr ≤ G, not
necessarily distinct. Moreover, fix d > 0 and faithful d-dimensional representations
Vi of each of the Hi. Is there a d-dimensional irreducible variety X over C with a
G action such that there are r distinct points x1, . . . , xr with xi fixed by Hi and
isotropy representation given by Vi?

Reichstein remarked that this is analogous in spirit to the Chinese Remainder
Theorem and can be done if each Hi is abelian; see [74, Theorem 8.6] for details.
Moreover, when r = 1 and H = G, one can simply take X = V , while for r = 2
and H1 = H2 = G, it is an unpublished result of A. Kresch. In the special case,
where H1, . . . ,Hr are the non-conjugate Sylow subgroups of G (i.e., a list of Sylow
subgroups for the different primes dividing |G|), this problem arose in the context
of work on essential dimension of finite groups (see [Conjecture 11.5][25]).

3.10. Hunter Spink.

Problem 35. Let R be a ring with m1, . . . ,mk ∈ R. Assume that, for any subset
A ⊂ {1, . . . , k}, we have ∑

i∈A
mi ∈ R×.
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Also set ai = m1x
i
1 + · · ·+mkx

i
k ∈ R[x1, . . . , xk]. What is the smallest n such that

there exist monic f(z), g(z) with coefficients in R[a1, . . . , an] giving

f(z)

g(z)
=

m1

z − x1
+ · · ·+ mk

z − xk
?

For context on this problem, see the paper by Spink and Dennis Tseng [79] on
incidence strata of affine varieties that also outlines their conjecture of n = 2k + 1
to problem 35.
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